Evaluation of Ethiopian chickpea (Cicer arietinum L.) genotypes for frost tolerance

Sintayehu ADMAS, Teklehaimanot HAILESELASSIE, Kassahun TESFAYE, Eleni SHIFERAW, K. Colton FLYNN


Frost stress is one of the most significant abiotic factors affecting chickpea (Cicer arietinum L.) production in the Ethiopian highlands. To investigate the frost tolerance of chickpea, 673 genotypes were characterized using an augmented design at Bakelo, Debre Berhan, Ethiopia for two years. A significant (p < 0.01) variability amongst genotypes was recorded for all agronomic traits considered. A considerable number of accessions better performing over the frost susceptible genotypes were identified for agronomic traits. Stem/leaf pigmented genotypes showed a better reaction for frost stress than non-pigmented genotypes. The majority of black seeded chickpea adapted well under frost stress when compared to with brown and white seeded genotypes. According to the freezing tolerance rate (FTR) and plant survival rate (SR), 83 (12.3 %) and 85 (12.6 %) genotypes were identified as frost tolerant. There was a strong correlation (p < 0.01) in grain yield with FTR, SR, seed shriveling score, stem/leaf pigmentation and seed color. Based on our findings, Ethiopian chickpea landraces has a good genetic potential for frost resistance traits for use in breeding programs. 


chickpea; Ethiopian landraces; frost survival rate; frost tolerance; germplasm characterization

Full Text:



Aravind, J., Sankar, S. M., Wankhede, D. P., & Kaur, V. (2020). augmentedRCBD: analysis of augmented randomised complete block designs. R package version 0.1. 2.

Badeck, F.W., & Rizza, F. (2015). A combined field/laboratory method for assessment of frost tolerance with freezing tests and chlorophyll fluorescence. Agronomy, 5(1), 71-88. DOI: 10.3390/agronomy5010071

Bejiga, G., Eshete, M., & Anbessa, Y. (1996). Improved cultivars and production technology of chickpea in Ethiopia.

Berger, J. D., Kumar, S., Nayyar, H., Street, K. A., Sandhu, J. S., Henzell, J. M., ... & Clarke, H. C. (2012). Temperature-stratified screening of chickpea (Cicer arietinum L.) genetic resource collections reveals very limited reproductive chilling tolerance compared to its annual wild relatives. Field Crops Research, 126, 119-129. https://doi.org/10.1016/j.fcr.2011.09.020

Bhasker, P., Nandwal, A. S., Kumar, N., Chand, G., Yadav, S. P., Devi, S., & Singh, S. (2017). High temperature significance of anthocyanins accumulation stress responses in chickpea (Cicer arientinum L.). Int J Agric Innov Res, 6, 2319-2473.

Chaturvedi, S. K., Mishra, D. K., Vyas, P., & Mishra, N. (2009). Breeding for cold tolerance in chickpea. Trends in Biosciences, 2(2), 1-4.

Croser, J. S., Clarke, H. J., Siddique, K. H. M., & Khan, T. N. (2003). Low-temperature stress: implications for chickpea (Cicer arietinum L.) improvement. Critical Reviews in Plant Sciences, 22(2), 185-219.

CSA (Central Statistical Agency) .2018/2019. Agricultural Sample Survey Report on Area and Production of Crops Private Peasant Holdings, Meher Season. Central Statistical Agency, statistical bulletin 589, Addis Ababa

FAO. (2020). FAO in Ethiopia: Ethiopia at a glance. Retrieved from http://www.fao.org/ethiopia/fao-in-ethiopia/ethiopia-at-a-glance/en/ on 07 Dec 2020

Fiebelkorn, D., & Rahman, M. (2016). Development of a protocol for frost-tolerance evaluation in rapeseed/canola (Brassica napus L.). The Crop Journal, 4(2), 147-152. https://doi.org/10.1016/j.cj.2015.11.004

Fikre, A., & Bekele, D. (2020). Chickpea Breeding and Crop Improvement in Ethiopia: Past, Present and the Future. Universal Journal of Agricultural Research 8(2): 33-40. DOI: 10.13189/ujar.2020.080202

Fikre, A., Desmae, H., & Ahmed, S. (2020). Tapping the Economic Potential of Chickpea in Sub-Saharan Africa. Agronomy, 10(11), 1707. https://doi.org/10.3390/agronomy10111707

Fikre, A., Funga, A., Korbu, L., Eshete, M., Girma, N., Zewdie, A., ... & Ojiewo, C. O. (2018). Stability analysis in chickpea genotype sets as tool for breeding germplasm structuring strategy and adaptability scoping. Ethiopian Journal of Crop Science, 6(2), 19-37.

Gogoi, N., Farooq, M., Barthakur, S., Baroowa, B., Paul, S., Bharadwaj, N., & Ramanjulu, S. (2018). Thermal stress impacts on reproductive development and grain yield in grain legumes. Journal of Plant Biology, 61(5), 265-291.DOI: 10.1007/s12374-018-0130-7

Heidarvand, L., Amiri, R. M., Naghavi, M. R., Farayedi, Y., Sadeghzadeh, B., & Alizadeh, K. (2011). Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russian Journal of Plant Physiology, 58(1), 157-163. DOI: 10.1134/S1021443711010080

Henriquez, B., Olson, M., Hoy, C., Jackson, M., & Wouda, T. (2017). Frost tolerance of faba bean cultivars (Vicia faba L.) in central Alberta. Canadian Journal of Plant Science, 98(2), 509-514. https://doi.org/10.1139/cjps-2017-0078

Inci, N. E., & Toker, C. (2011). Screening and selection of faba beans (Vicia faba L.) for cold tolerance and comparison to wild relatives. Genetic Resources and Crop Evolution, 58(8), 1169-1175. DOI:10.1007/s10722-010-9649-2

Kanouni, H., Khalily, M., & Malhotra, R. S. (2009). Assessment of cold tolerance of chickpea at rainfed highlands of Iran. American-Eurasian Journal Agriculture & Environment Science, 5, 250-254.

Kumar, S., Nayyar, H., Bhanwara, R.K., & Upadhyaya, H.D. (2010). Chilling stress effects on reproductive biology of chickpea. J SAT Agric Res., 8:1-14. Corpus ID: 32128576

Liu, R., Fang, L., Yang, T., Zhang, X., Hu, J., Zhang, H., ... & Zong, X. (2017). Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections. Scientific reports, 7(1), 1-10. DOI:10.1038/s41598-017-06222-y

Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics, 444(2), 139-158. https://doi.org/10.1016/j.abb.2005.10.018

Maphosa, L., Richards, M. F., Norton, S. L., & Nguyen, G. N. (2020). Breeding for abiotic stress adaptation in chickpea (Cicer arietinum L.): A comprehensive review. Crop Breeding, Genetics and Genomics, 4(3). https://doi.org/10.20900/cbgg20200015

Mir, A. H., Bhat, M. A., Fayaz, H., Dar, S. A., Maqbool, S., Bhat, N. A., ... & Mir, R. R. (2019). Assessment of cold tolerance in chickpea accessions in North-Western Himalayas of Jammu and Kashmir, India. Journal of Pharmacognosy and Phytochemistry, 8(4), 2268-2274.

Muoni, T., Barnes, A. P., Öborn, I., Watson, C. A., Bergkvist, G., Shiluli, M., & Duncan, A. J. (2019). Farmer perceptions of legumes and their functions in smallholder farming systems in east Africa. International journal of agricultural sustainability, 17(3), 205-218. https://doi.org/10.1080/14735903.2019.1609166

Nayyar, H., Kaur, G., Kumar, S., & Upadhyaya, H. D. (2007). Low temperature effects during seed filling on chickpea genotypes (Cicer arietinum L.): probing mechanisms affecting seed reserves and yield. Journal of agronomy and crop science, 193(5), 336-344. https://doi.org/10.1111/j.1439-037X.2007.00269.x

Nezami, A., Bandara, M. S., & Gusta, L. V. (2012). An evaluation of freezing tolerance of winter chickpea (Cicer arietinum L.) using controlled freeze tests. Canadian Journal of Plant Science, 92(1), 155-161. https://doi.org/10.4141/cjps2011-057

Sallam, A., Martsch, R., Moursi, Y.S. (2015). Genetic variation in morpho-physiological traits associated with frost tolerance in faba bean (Vicia faba L.). Euphytica, 205(2):395-408

Sharma, K. D., & Nayyar, H. (2014). Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.). BMC research notes, 7(1), 1-13.

Shiferaw, B., & Teklewold, H. (2007). Structure and functioning of chickpea markets in Ethiopia: Evidence based on analyses of value chains linking smallholders and markets. IPMS Working Paper 6, ILRI, Nairobi, Kenya. 55 pp.

Singh RK, Chaudhary BD. 1977. Biometrical Methods in Quantitative Genetices Analysis. Kalyanin Puplishers, New Delhi.

Singh, K. B., Malhotra, R. S., & Saxena, M. C. (1989). Chickpea evaluation for cold tolerance under field conditions. Crop science, 29(2), 282-285. https://doi.org/10.2135/cropsci1989.0011183X002900020009x

Singh, K. B., Malhotra, R. S., & Saxena, M. C. (1993). Relationship between cold severity and yield loss in chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science, 170(2), 121-127. https://doi.org/10.1111/j.1439-037X.1993.tb01065.x

Srinivasan, A., Johansen, C., & Saxena, N.P. (1998). Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): characterization of stress and genetic variation in pod set. Field Crops Research, 57(2):181-193. https://doi.org/10.1016/S0378-4290(97)00118-4

Srinivasan, A., Saxena, N. P., & Johansen, C. (1999). Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): genetic variation in gamete development and function. Field Crops Research, 60(3), 209-222. https://doi.org/10.1016/S0378-4290(98)00126-9

Toker, C. (2005). Preliminary screening and selection for cold tolerance in annual wild Cicer species. Genetic Resources and Crop Evolution, 52(1), 1-5.

Toker, C., Lluch, C., Tejera, N. A., Serraj, R., & Siddique, K. H. M. (2007). 23 Abiotic Stresses. Chickpea breeding and management, 474.

Van der Maesen, L. J. G. (1987). Origin, history and taxonomy of chickpea. In The chickpea (pp. 11-34).

Wild, D. J. (2005). MINITAB release 14.

Wu, Y. F., Zhong, X. L., Hu, X., Ren, D. C., Lv, G. H., Wei, C. Y., & Song, J. Q. (2014). Frost affects grain yield components in winter wheat. New Zealand Journal of Crop and Horticultural Science, 42(3), 194-204. https://doi.org/10.1080/01140671.2014.887588

DOI: http://dx.doi.org/10.14720/aas.2021.117.2.2079


  • There are currently no refbacks.

Copyright (c) 2021 Sintayehu Admas

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941