Enhancement of shoot proliferation and evaluation of biotic elicitation effects on anatomical changes of pseudo stem and anti-lipid peroxidation activity of Curcuma mangga Val.

Fariz ABRAHAM, Lai-Keng CHAN, Gunawan INDRAYANTO, Peng Lim BOEY

Abstract


Mango turmeric (Curcuma mangga Val.) contains many bioactive compounds that are used for traditional treatment of various health problems and ailments. Slow propagation nature of C. mangga have resulted in short supply to meet the market demand. The longitudinally incised half shoot explants promote 100 % increased of shoot number compared with non-incised shoots with the formation of average 6.6 shoots/explant when they were cultured either vertically or horizontally on MS medium supplemented with 2.0 mg l-1 BA and 0.5 mg l-1 NAA. Biotic elicitation with 3.5 mg l-1 or 5.0 mg l-1 yeast extract or combination of 150 mg l-1 chitosan and 3.5 mg l-1 yeast extract did not promote shoot proliferation but exhibited anti-lipid peroxidation activity slightly lower than quercetin, a potent plant antioxidant flavonoid and butyl hydroxyl toluene (BHT), a commercial preservative agent which is used as a positive control. While absolute ethanol which served as a negative control did not show any anti-lipid peroxidation activity. Biotic elicitation of C. mangga plantlets using similar elicitors resulted in anatomical changes of its pseudostem with reduced number of thin lignified xylem cells and the presence of druse suspected to be oxalate crystals inside the cortex cells with delicate cell wall.


Keywords


anti-lipid peroxidation activity; chitosan; mango turmeric; pseudostem; shoot proliferation; yeast extract

Full Text:

PDF

References


Abbas, M. S., Taha, H. S., Aly, U. I., El-Shabrawi, H. M., Gaber, E. S. I. (2011). In vitro propagation of ginger (Zingiber officinale Rosco). Journal of Genetic Engineering and Biotechnology, 9(2), 165–172. https://doi.org/10.1016/j.jgeb.2011.11.002

Abraham, F. (2010). Elicitation effect on the growth and biochemical activities of Curcuma mangga Val. (Zingiberaceae) in vitro plantlets. Master of Science Thesis, Universiti Sains Malaysia, Penang, Malaysia.

Abraham, F., Bhatt, A., Chan, L.K., Indrayanto, G., Sulaiman, S. F. (2011). Effect of yeast extract and chitosan on shoot proliferation, morphology and antioxidant activity of Curcuma mangga in vitro plantlets. African Journal of Biotechnology, 10(40), 7787–7795. https://doi.org/10.5897/ajb10.1261

Ahmed Hasan, S., Khasim, S.M., Ramudu, J. (2020). Development of Standard Protocols for In Vitro Regeneration of Some Selected Banana Cultivars (Musa spp.) from India. In: Khasim, S.M., Long, C., Thammasiri, K., Lutken, H. (eds) Medicinal Plants: Biodiversity, Sustainable Utilization and Conservation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1636-8_45

Awin, T., Mediani, A., Mohd Faudzi, S. M., Maulidiani, Leong, S. W., Shaari, K., Abas, F. (2020). Identification of α-glucosidase inhibitory compounds from Curcuma mangga fractions. International Journal of Food Properties, 23(1), 154–166. https://doi.org/10.1080/10942912.2020.1716792

Bejoy, M., Dan, M., Anish, N. P., Anjana, R. G., Radhika, B.J., Manesh, K. (2012). Micropropagation of Indian ginger (Curcuma vamana Sabu & Mangaly): A wild relative of tumeric. Biotechnology, 11(6), 333–338. https://doi.org/10.3923/biotech.2012.333.338

David, A.V.A., Arulmoli, R., Parasuraman, S. (2016). Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacognosy Reviews, 10, 84-89. https://doi.org/10.4103/0973-7847.194044

Doege, S. J. (2003). The role of natural calcium oxalate crystals in plant defense against chewing insects. Inquiry: The University of Arkansas Undergraduate Research Journal, 4, 88–94.

El-Hawaz, R.F., Bridges, W.C., Adelberg, J.W. (2015). In vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems. PLOS One, 10(4), 1-13. http://doi10.1371/journalpone.0118912

Espinosa-Leal, C.A., Puente-Garza, C.A., Garcia-Lara, S. (2018). In vitro plant tissue culture: means for production of biological active compounds. Planta, 248, 1-18. https://doi.org/10.1007/s00425-018-2910-1

Farjaminezhad, R. and Garoosi, G. (2021). Improvement and prediction of secondary metabolites production under yeast extract elicitation of Azadirachta indica cell suspension culture using response surface methodology. AMB Express, 11, 1-16. https://doi.org/10.1186/s13568-021-01203-x

Ferrari, M. P. de S., Antoniazzi, D., Nascimento, A. B., Franz, L. F., Bezerra, C. S., Magalhães, H. M. (2016). Evaluation of new protocols to Curcuma longa micropropagation: A medicinal and ornamental specie. Journal of Medicinal Plants Research, 10(25), 367–376. https://doi.org/10.5897/jmpr2016.6109

Fitriastuti, D., Julianto, T.S., Iman, A. W. N. (2020). Identification and heme polymerization inhibition activity (HPIA) assay of ethanolic extract and fraction of Temu Mangga (Curcuma mangga Val.) rhizome. EKSAKTA: Journal of Sciences and Data Analysis, 1(1), 64–72. https://doi.org/10.20885/eksakta.vol1.iss1.art10

Franceschi, V.R. and Horner, H.T. (1980). Calcium oxalate crystals in plants. The Botanical Review, 46, 361–427. https://doi.org/10.1007/BF02860532

Freeman DJ, Wenerstrom G, Spruance SL. (1985).Treatment of recurrent herpes simplex labialis with topical butylated hydroxytoluene. Clinical Pharmacology & Therapeutics, 38(1), 56-9. https://doi.org/10.1038/clpt.1985.134

Furmuly, A. M., Azemi, N. (2020). A review on golden species of Zingiberaceae family: Genus Curcuma. Journal of Critical Reviews, 7(16), 882–895. https://doi.org/10.31838/jcr.07.16.114

Hedayati, A., Hemmaty, S., Nourozi, E. , Amirsadeghi, A. (2021) Effect of yeast extract on the gene expression and tropane alkaloids production in Atropa belladonna L. hairy roots. Russian Journal of Plant Physiology, 68, 102–109 (2021). https://doi.org/10.1134/S1021443721010088

Jala, A. (2012). Effects of NAA BA and sucrose on shoot induction and rapid micropropagation by trimming shoot of Curcuma longa L. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 3(2), 101–109. http://TuEngr.com/V03/101-109.pdf.

Leong-Škorničková, J., Soonthornkalump, S., Thongbai, W. (2021). Four new Curcuma species (Zingiberaceae) from Thailand. Blumea, 65, 244-253. https://doi.org/10.3767/blumea.2021.65.03.09

Kim, Y.O. and Lee, E.J. (2011). Comparison of phenolic compounds and the effects of invasive and native species in East Asia: support for the novel weapons hypothesis. Ecological Research, 26, 87–94. https://doi.org/10.1007/s11284-010-0762-7

Kochan, E., Szymczyk, P., Kuzma, L., Lipert, A., Szymanska, G. (2017). Yeast extract stimulates ginsenoside production in hairy root cultures of American ginseng cultivated in shake flasks and nutrient sprinkle bioreactors. Molecules, 22, 1-15. https://doi.org/10.3390/molecules22060880

Li, Y.Y., Tian, Q.L., Yu, H.W., Lu, L.M. (2021). Progress towards a molecular-level understanding of Curcuma alismatifolia. European Journal of Horticultural Science, 86(3), 328-334. https://doi.org/10.17660/eJHS.2021/86.3.12

Marchant, M.J., Molina, P., Montecinos, M., Guzman, L., Balada, C., Fassio., C., Castro, M. (2021). In vitro propagation of Easter Islaand Curcuma longa from rhizome explants using temporary immersion system. Agronomy, 2121, 1-11. http://doi.org/10.3390/agronomy11112121

Maryam, S. and Martiningsih (2021). Antioxidant activity and total fenol content white saffron (Curcuma mangga Val). IOP Conference Series: Materials Science and Engineering, 1115(1), 012081. https://doi.org/10.1088/1757-899x/1115/1/012081

Mohanty, S., Parida, R., Sandeep,I., Sahoo, S., Nayak, S. (2015). Evaluation of drug yielding potential of micropropagated Curcuma aromatica. International Journal of Pharmacy and Pharmaceutical Sciences, 7(4), 71-76.

Mok., P.K. and Ho., W.S. (2019). Rapid in vitro propagation and efficient acclimatization of Neolamarckia cadamba. Asian Journal of Plant Science, 18, 153-163. https://doi.org/10.3923/ajps.2019.153.163

Muchtaromah, B., Ahmad, M., Romaidi, Nazilah, L. A., Naja, N. A. (2018). Antibacterial activity of water and ethanol extract of Allium sativum, Curcuma mangga, and Acorus calamus combination. Journal of Biological Researches, 24(1), 8–15. https://doi.org/10.23869/bphjbr.24.1.20182

Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nakata, P.A. (2012). Plant calcium oxalate crystal formation, function, and its impact on human health. Frontiers of Biology, 7, 254–266. https://doi.org/10.1007/s11515-012-1224-0

Osawa, T. and Namiki, M. (1981). A novel type of antioxidant isolated from leaf wax of Eucalyptus leaves. Agricultural and Biological Chemistry, 45(3), 735–739. https://doi.org/10.1080/00021369.1981.10864583

Pang, Z., Chen, J., Wang, T., Gao, C., Li, Z. Guo, L., Xu, J., Cheng, Yi. (2021). Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science, 22, 1-22.

https://doi.org/10.3389/fpls.2021.621276

Pikulthong, V., Teerakathiti, T., Thamchaipenet, A., Peyachoknagul, S. (2016). Development of somatic embryos for genetic transformation in Curcuma longa L. and Curcuma mangga Valeton & Zijp. Agriculture and Natural Resources, 50(4), 276-285. https://doi.org/10.1016/j.anres.2015.08.004

Ramadanil, Damry, Rusdi, Hamzah, B., Zubair, M. S. (2019). Traditional usages and phytochemical screenings of selected Zingiberaceae from central Sulawesi, Indonesia. Pharmacognosy Journal, 11(3), 505–510. https://doi.org/10.5530/pj.2019.11.80

Riaz, A., Riaz, A., Rattu, A.U.R., Tahir, M.I., Azeem, M. (2014). Phenylalanine ammonia-lyse (PAL) and peroxidase activity in brown rust infected tissues of Pakistani wheat cultivars. Pakistan Journal of Botany, 46(3), 1101-1107. https://www.researchgate.net/publication/262896801

Sánchez-Sampedro, M. A., Fernández-Tárrago, J., Corchete, P. (2005). Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. Journal of Biotechnology, 119(1), 60–69. https://doi.org/10.1016/j.jbiotec.2005.06.012

Sharmin, S.A., Alam, M.J., Sheikh, M.M.I., Zaman, R., Khalekuzzaman, M., Mondal, S.C., Haque, M.A., Alam, M.F., Alam, I. (2013). Micropropagation and antimicrobial activity of Curcuma aromatica Salisb., a threatened aromatic medicinal plant. Turkish Journal of Biology, 37, 698-708. http://doi:10.3906/biy-1212-11

Škorničková, J. (2007). Taxonomic Studies in Indian Curcuma L. Ph.D Thesis, Charles University, Prague, Czech Republic.

Soonthornkalump, S., Ongsakul, A., Dolaji, A., Leong-Škorničková, J. (2020). Curcuma papilionacea (Zingiberaceae), an unusual new species from southern Thailand. Phytotaxa, 432(1), 011-016. https://doi.org/10.11646/phytotaxa.432.1.2

Subositi, D. and Wahyono, S. (2019). Study of the genus curcuma in Indonesia used as traditional herbal medicines. Biodiversitas, 20(5), 1356–1361. https://doi.org/10.13057/biodiv/d200527

Sudipta, J., Asit, R., Ambika, S., Suprava, S., Biswabhusan, D., Basudeba, K., Sanghamitra, N. (2020). Rapid plant regeneration in industrially important Curcuma zedoaria revealing genetic and biochemical fidelity of the regenerants. 3 Biotech, 10, 17. https://doi.org/10.1007/s13205-019-2009-9

Walker-Simmons, M., Hadwiger, L., Ryan, C.A. (1983). Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochemical and Biophysical Research Communications, 110(1), 194-199. http://10.1016/0006-291x(83)91279-2

Webb, M. A. (1999). Cell-mediated crystallization of calcium oxalate in plants. Plant Cell, 11(4), 751–761. https://doi.org/10.1105/tpc.11.4.751

Yuandani, Yuliasmi, S., Satria, D., Dongoran, R. F., Sinaga, M. S., Marpaung, N. H. A. (2019). Correlation between the phytochemical constituents of Curcuma mangga and its immunomodulatory effect. Rasayan Journal of Chemistry, 12(1), 1–6. https://doi.org/10.31788/RJC.2019.1215050

Zahid, N. A., Jaafar, H. Z., Hakiman, M. (2021). Micropropagation of ginger (Zingiber officinale ‘Bentong’) and evaluation of its secondary metabolites and antioxidant activities compared with the conventionally propagated plant. Plants, 10, 1–17. https://doi.org/10.3390/plants10040630




DOI: http://dx.doi.org/10.14720/aas.2022.118.2.2416

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Fariz ABRAHAM, Lai Keng CHAN, Gunawan INDRAYANTO, Peng Lim BOEY

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941