Salinity induced changes in water relations, oxidative damage and morpho-physiological adaptations of pistachio genotypes in soilless culture

Zahra Mirfattahi, Soheil Karimi, Mahmoud Reza Roozban


Selecting salt tolerant rootstocks is a sustainable approach for developing fruit trees in salinity prone areas. 60-day-old seedlings of Pistacia vera ‘Akbari’ and ‘Ghazvini’, and P. vera ‘Ghazvini’ × P. atlantica (G×A) were subjected to 0, 50, 100 and 150 mM NaCl in half strength Hoagland’s nutrient solution. After 45 days, the growth, water relations, and oxidative damage parameters were investigated. Salt stress reduced plant biomass, height, crown diameter and leaf number, but increased specific leaf area (SLA) of the seedlings. Under salt stress, the growth of ‘Akbari’ seedlings was higher than the other genotypes. Accumulation of malondialdehyde (MDA) and proline was observed in the leaves of salt affected seedlings. ‘Ghazvini’ seedlings had the highest MDA concentration and the lowest cell membrane stability in their leaves. Degredation of photosynthetic pigments under salt stress was lower in the leaves of ‘Akbari’ seedlings than that in other genotypes. Increase in leaf succulence was observed in ‘Akbari’ and G×A seedlings in response to salt stress. Relative water content and concentration of anthocyanins in the leaves of pistachio genotypes remained unchanged under salt stress. The results revealed that monitoring leaf abscission, SLA, leaf succulence, MDA concentration, and photosynthetic pigments provide suitable contrast for screening salt tolerance in pistachio. Furthuremore, ‘Akbari’ was found to be the most salt tolerant genotype.


interspecific hybrid; leaf pigments; morphophysiological adaptation; salt stress; oxidative stress; Pistacia vera

Full Text:



Aragüés, R., Puy, J., Royo, A. and Espada, J. L. (2005). Three-year field response of young olive trees (Olea europaea L., cv. Arbequina) to soil salinity: trunk growth and leaf ion accumulation. Plant and Soil, 271(1-2), 265-273. doi:10.1007/s11104-004-2695-9

Arzani, K., Ghasemi, M., Yadollahi, A. and Hokmabadi, H. (2013). Study of foliar epidermal anatomy of four pistachio rootstocks under water stress. Idesia (Arica), 31(1), 101-107. doi:10.4067/S0718-34292013000100012

Ashraf, M. Y. and Sarwar, G. (2002). Salt tolerance potential in some members of Brassicaceae physiological studies on water relations and mineral contents. Prospects for Saline Agriculture, 237-245. doi:10.1007/978-94-017-0067-2_26

Ball, M. C. (2002). Interactive effects of salinity and irradiance on growth: implications for mangrove forest structure along salinity gradients. Trees, 16(2), 126-139. doi:10.1007/s00468-002-0169-3

Basu, S., Roychoudhury, A., Saha, P. P. and Sengupta, D. N. (2010). Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60(1), 51. doi:10.1007/s10725-009-9418-4

Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/BF00018060

Behboudian M. H., Walker R. R., Torokfaivy, E. (1986). Effects of water stress and salinity on photosynthesis of pistachio. Scientia Horticulturae, 29, 251-261. doi:10.1016/0304-4238(86)90068-3

Bernstein, N., Ioffe, M. and Zilberstaine, M. (2001). Salt-stress effects on avocado rootstock growth. I. Establishing criteria for determination of shoot growth sensitivity to the stress. Plant and Soil, 233(1), 1-11. doi:10.1023/A:1010370802773

Bosabalidis, A. M. and Kofidis, G. (2002). Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science, 163(2), 375-379. doi:10.1016/S0168-9452(02)00135-8

Brumós, J., Colmenero-Flores, J. M., Conesa, A., Izquierdo, P., Sánchez, G., Iglesias, D. J., López-Climent, M. F., Gómez-Cadenas, A. and Talón, M. (2009). Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Functional and Integrative Genomics, 9(3), 293-309. doi:10.1007/s10142-008-0107-6

Chalker-Scott, L. (2002). Do anthocyanins function as osmoregulators in leaf tissues?. Advances in Botanical Research, 37, 103-127. doi:10.1016/S0065-2296(02)37046-0

Dmitriev, L. F. and Titov, V. N. (2010). Lipid peroxidation in relation to ageing and the role of endogenous aldehydes in diabetes and other age-related diseases. Ageing Research Reviews, 9(2), 200-210. doi:10.1016/j.arr.2009.09.004

Escalona, J., Flexas, J. and Medrano, H. (2002). Drought effects on water flow, photosynthesis and growth of potted grapevines. Vitis, 41(2), 57-62.

Ferguson, L., Poss, J. A., Grattan, S. R., Grieve, C. M., Wang, D., Wilson, C. and Chao, C. T. (2002). Pistachio rootstocks influence scion growth and ion relations under salinity and boron stress. Journal of the American Society for Horticultural Science, 127(2), 194-199.

Field, C,, Merino, J., and Mooney, H. A. (1983). Compromises between water use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia, 60, 384-389. doi:10.1007/BF00376856

Fitter, A. H., and Hay, R. K. M. (2002). Environmental physiology of plants. New York, NY, Academic Press

Flexas, J. and Medrano, H. (2002). Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited. Annals of Botany, 89(2), 183-189. doi:10.1093/aob/mcf027

Foyer, C. H., Lopez‐Delgado, H., Dat, J. F. and Scott, I. M. (1997). Hydrogen peroxide‐and glutathione‐associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum, 100(2), 241-254. doi:10.1111/j.1399-3054.1997.tb04780.x

Gill, S. S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016

Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79(4), 597-606. doi: 10.1111/tpj.12386

Heath, R. L. and Packer, L. (1986). Photoperoxidation in isolated chloroplasts: I., Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi:10.1016/0003-9861(68)90654-1

Hishida, M., Ascencio-Valle, F., Fujiyama, H., Orduño-Cruz, A., Endo, T., and Larrinaga-Mayoral, J. Á. (2014). Antioxidant enzyme responses to salinity stress of Jatropha curcas and J. cinerea at seedling stage. Russian Journal of Plant Physiology, 61(1), 53-62. doi:10.1134/S1021443714010063

Hoagland, D. R., Arnon, D. I. (1950). The water culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347, 1–32.

Hoekstra, F. A., Golovina, E. A. and Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6, 431-38. doi: 10.1016/S1360-1385(01)02052-0

Hokmabadi, H., Arzani, K., and Grierson, P. F. (2005). Growth, chemical composition, and carbon isotope discrimination of pistachio (Pistacia vera L.) rootstock seedlings in response to salinity. Crop and Pasture Science, 56(2), 135-144. doi:10.1134/S1021443714010063

Hopkins, W. G. (1999). Introduction to plant physiology (No. Ed. 2). John Wiley and Sons.

Jain, G. and Gould, K. S. (2015). Are betalain pigments the functional homologues of anthocyanins in plants? Environmental and Experimental Botany, 119, 48-53. doi:10.1016/j.envexpbot.2015.06.002

Jaleel, C. A., Gopi, R., Sankar, B., Manivannan, P., Kishorekumar, A., Sridharan, R. and Panneerselvam, R. (2007). Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South African Journal of Botany, 73(2), 190-195. doi:10.1016/j.sajb.2006.11.001

Jennings, D. H. (1968). Halophytes, succulence and sodium in plants - a unified theory. New Phytologist, 67(4), 899-911. doi:10.1111/j.1469-8137.1968.tb06402.x

Karimi, S. and Rahemi, M. (2012). Growth and chemical composition of pistachio seedling rootstock in response to exogenous polyamines under salinity stress. Journal of Nuts, 3, 21-30.

Karimi, S., Hojati, S., Eshghi, S., Moghaddam, R. N. and Jandoust, S. (2012). Magnetic exposure improves tolerance of fig ‘Sabz’ explants to drought stress induced in vitro. Scientia Horticulturae, 137, 95-99. doi:10.1016/j.scienta.2012.01.018

Karimi, S., Mirfattahi, Z., Ferguson, L. and Tavallali, V. (2017). Using controlled salt stress and β-aminobutyric acid signaling to decrease transplant failure. Scientia Horticulturae, 225, 156-162. doi: 10.1016/j.scienta.2017.06.070

Karimi, S., Rahemi, M., Eshghi, S., Maftoun, M. and Tavallali, V. (2009). Effects of long-term salinity on growth and performance of two pistachio (Pistacia vera L.) rootstocks. Australian Journal of Basic and Applied Sciences, 3(3), 1630-1639.

Karimi, S., Yadollahi, A. and Arzani, K. (2013). Responses of almond genotypes to osmotic stress induced in vitro. Journal of Nuts, 4(4), 1-7.

Keutgen, A. and Pawelzik, E. (2007). Modifications of taste-relevant compounds in strawberry fruit under NaCl salinity. Food Chemistry, 105(4), 1487-1494. doi:10.1016/j.foodchem.2007.05.033

Kim, I. and Park, S. (2010). Ultrastructural characteristics of three chenopod halophytes lacking salt excretion structures. Journal of Plant Biology, 53(4), 314-320. doi: 10.1007/s12374-010-9119-6. doi:10.1007/s12374-010-9119-6

Larcher, W. and de Assis Prado, C. H. B. (2000). Ecofisiologia vegetal São Carlos: RiMa Artes e textos.

Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. doi:10.1016/0076-6879(87)48036-1

Maiale, S., Sánchez, D. H., Guirado, A., Vidal, A. and Ruiz, O. A. (2004). Spermine accumulation under salt stress. Journal of Plant Physiology, 161(1), 35-42. doi:10.1078/0176-1617-01167

Mehta, P., Jajoo, A., Mathur, S. and Bharti, S. (2010). Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiology and Biochemistry, 48(1), 16-20. doi:10.1016/j.plaphy.2009.10.006

Miller, G. A. D., Suzuki, N., Ciftci- Yilmaz, S. U. L. T. A. N. and Mittler, R. O. (2010). Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell and Environment, 33(4), 453-467. doi:10.1111/j.1365-3040.2009.02041.x

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. doi:10.1016/S1360-1385(02)02312-9

Miyamoto, S., Riley, T., Gobran, G. and Petticrew, J. (1986). Effects of saline water irrigation on soil salinity, pecan tree growth and nut production. Irrigation Science, 7(2), 83-95. doi:10.1007/BF00259425

Morovati, I. (2013). Controlled pollinations to breeding of pistachio rootstock for salinity tolerance. College of Aburaihan, Tehran, Iran, Thesis, 95 p.

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2), 239-250. doi:10.1146/annurev.arplant.59.032607.092911

Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. doi:10.1146/annurev.arplant.59.032607.092911

Nishida, Y., Yamashita, E. and Miki, W. (2007). Quenching activities of common hydrophilic and lipophilic antioxidants against singlet oxygen using chemiluminescence detection system. Carotenoid Science, 11(6): 16-20.

Omamt, E.N., Hammes, P.S. and Robbertse, P.J. (2006). Differences in salinity tolerance for growth and water‐use efficiency in some amaranth (Amaranthus spp.) genotypes. New Zealand Journal of Crop and Horticultural Science, 34(1), 11-22. doi:10.1080/01140671.2006.9514382

Osone, Y., Ishida, A. and Tateno, M. (2008). Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots. New Phytologist, 179(2), 417-427. doi:10.1111/j.1469-8137.2008.02476.x

Ottow, E. A., Brinker, M., Teichmann, T., Fritz, E., Kaiser, W., Brosche, M., Kangasjarvi, J., Jiang, X. and Polle, A. (2005). Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiology, 139: 1762-1772. doi:10.1104/pp.105.069971

Parida, A. K. and Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 3, 324-349. doi:10.1016/j.ecoenv.2004.06.010

Pérez-López, U., Robredo, A., Lacuesta, M., Mena-Petite, A. and Munoz-Rueda, A. (2009). The impact of salt stress on the water status of barley plants is partially mitigated by elevated CO2. Environmental and Experimental Botany, 66(3): 463-470. doi:10.1016/j.envexpbot.2009.03.007

Piao, H. L., Lim, J. H., Kim, S. J., Cheong, G. W. and Hwang, I. (2001). Constitutive over‐expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. The Plant Journal, 27(4), 305-314. doi:10.1046/j.1365-313x.2001.01099.x

Rahemi, M., Karimi, S., Sedaghat, S. and Rostami, A. A. (2017). Physiological responses of olive cultivars to salinity stress. Advances in Horticultural Science, 31(1), 53-59. doi: 10.13128/ahs-20726

Rao, R. N., Udaykumar, M., Farquhar, G. D., Talwar, H. S. and Prasad, T. G. (1995). Variation in carbon isotope discrimination and its relationship to specific leaf area and ribulose-1,5-bisphosphate carboxylase content in groundnut genotypes. Functional Plant Biology, 22(4), 545-551. doi:10.1071/PP9950545

Saadatmand, A. R., Banihashemi, Z., Maftoun, M. and Sepaskhah, A. R. (2007). Interactive effect of soil salinity and water stress on growth and chemical compositions of pistachio nut tree. Journal of Plant Nutrition, 30(12), 2037-2050. doi:10.1080/01904160701700483

Sefton, C. A., Montagu, K., Atwell, B. J. and Conroy, J. P. (2002). Anatomical variation in juvenile eucalypt leaves accounts for differences in specific leaf area and CO2 assimilation rates. Australian Journal of Botany, 50(3), 301-310. doi:10.1071/BT01059

Sevengor, S., Yasar, F., Kusvuran, S. and Ellialtioglu, S. (2011). The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African Journal of Agricultural Research, 6(21), 4920-4924. doi: 10.5897/AJAR11.668

Sherwin, H. W. and Farrant, J. M. (1998). Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa. Plant Growth Regulation, 24(3), 203-210. doi: 10.1023/A:100580161089

Sperdouli, I. and Moustakas, M. (2012). Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology, 169(6), 577-585. doi:10.1016/j.jplph.2011.12.015

Szabados, L. and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009

Taiz, L. and Zeiger, E. 2002. Plant Physiology, Sunderland, Massachusetts. Sinauer Associates.

Tavallali, V., Rahemi, M. and Panahi, B. (2008). Calcium induces salinity tolerance in pistachio rootstocks, Fruits, 63(5), 285-296. doi:10.1051/fruits:2008024

Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. and Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, 45(4), 523-539. doi:10.1111/j.1365-313X.2005.02593.x

Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts, Plant Physiology, 64(1), 88-93. doi:10.1104/pp.64.1.88

Wahome, P. K., Jesch, H. H. and Grittner, I. (2001). Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis ‘Major’and R. rubiginosa. Scientia Horticulturae, 87(3), 207-216. doi:10.1016/S0304-4238(00)00168-0

Yaron, B., Zieslin, N. and Halevy, A. H. (1969). Response of Baccara roses to saline irrigation Journal of the American Society for Horticultural Science, 94, 481–484.



  • There are currently no refbacks.

Copyright (c) 2017 Zahra Mirfattahi, Soheil Karimi, Mahmoud Reza Roozban

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941