Influence of in ovo and pre-starter zinc and copper supplementation on growth performance and gastrointestinal tract development of broiler chickens

Vaibhav Bhagwan AWACHAT, Arumbackam Vijayarangam ELANGOVAN, Olajide Mark SOGUNLE, Corbon Godfrey DAVID, Jyotirmoy GHOSH, Shivakumar Nisarani Kollurappa GOWDA, Subrat Kumar BHANJA, Samir MAJUMDAR

Abstract


This experiment was on 350 uniform sized Cobb broiler hatching eggs (60 g) to assess the response of trace mineral supplementation (Zinc and copper) on growth performance and gastrointestinal tract development in broiler chicken. The fertile eggs were divided into groups with in ovo trace mineral solution containing zinc (80 µg) and copper (16 µg) and without in ovo administration. After hatching, the chicks were further divided into four groups: Group I served as control without in ovo and without post-hatch supplemented diet (WoINOVO-WoPHS), birds in Group II were without in ovo and with post-hatch supplemented diet (WoINOVO-WPHS) (100 % higher level of zinc 200 ppm, copper 30 ppm in diet), birds in Group III had in ovo (zinc, 80 µg; copper,16 µg) and without post-hatch supplemented diet (WINOVO-WoPHS) and birds in Group IV had in ovo and with post-hatch supplemented diet (WINOVO-WPHS). Data collected were subjected to completely randomized design. Hatchability, live weight gain, feed intake and feed conversion ratio at 0–3 wk were not affected (p > 0.05) by in ovo administration of the mineral. Post-hatch supplementation of zinc and copper without in ovo supplementation showed better feed conversion ratio at 3–5 wk of age.  It could be recommended that for improved post-hatch performance, broiler chickens diets could be supplemented with inorganic zinc and copper.

Keywords


poultry; broilers; animal nutrition; feed additives; in ovo; trace minerals; growth; gastrointestinal development; immune response

Full Text:

PDF

References


Baéza, E., Gondret, F., Chartrin, P., Le Bihan-Duval, E., Berri, C., Gabriel, I., . . . Duclos, M. J. (2015). The ability of genetically lean or fat slow-growing chickens to synthesize and store lipids is not altered by the dietary energy source. Animal, 9(10), 1643–1652. https://doi.org/10.1017/S1751731115000683

Bakyaraj, S., Bhanja, S. K., Majumdar, S., & Dash, B. (2012). Modulation of post-hatch growth and immunity through in ovo supplemented nutrients in broiler chickens. Journal of Science Food and Agriculture, 92(2), 313–320. https://doi.org/10.1002/jsfa.4577

Bao, Y. M., Choct, M., Iji, P. A., & Bruerton, K. (2007). Effect of organically complexed copper, Iron, manganese and zinc on broiler performance, mineral excretion and accumulation in tissues. Journal of Applied Poultry Research, 16(3), 448–455. https://doi.org/10.1093/japr/16.3.448

Bhanja, S. K., Goel, A., Pandey, N., Mehra, M., Majumdar, S., & Mandal, A. B. (2015). In ovo carbohydrate supplementation modulates growth and immunity-related genes in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 99(1), 163–173. https://doi.org/10.1111/jpn.12193

Bhanja, S. K., & Mandal, A. B. (2005). Effect of in ovo injection of critical amino acids on pre and post-hatch growth, immunocompetence and development of digestive organs in broiler chickens. Asian-Australian Journal of Animal Science, 18(4), 524–531. https://doi.org/10.5713/ajas.2005.524

Bottje, W., Wolfenden, A., Ding, L., Wolfenden, R., Morgan, M., Pumford, . . . Hargis, B. (2010). Improved hatchability and post-hatch performance in turkey poults receiving a dextrin-iodinated casein solution in ovo. Poultry Science, 89(12), 2646–2650. https://doi.org/10.3382/ps.2010-00932

Burnham, D., Emmans, G. C., & Gous, R. M. (1992). Isoleucine requirements of the chicken: The effect of excess leucine and valine on the response to isoleucine. British Poultry Science, 33(1), 71–87. https://doi.org/10.1080/00071669208417445

Careghi, C., Tona, K., Onagbesan, O., Buyse, J., Decuypere, E., & Bruggeman, V. (2005). The effects of the spread of hatch and interaction with delayed feed access after hatch on broiler performance until seven days of age. Poultry Science, 84(8), 1314–1320. https://doi.org/10.1093/ps/84.8.1314

Carlton, W. W., & Henderson, W. (1964). Skeletal lesions in experimental copper-deficiency in chickens. Avian Diseases, 8(1), 48–55. https://doi.org/10.2307/1587818

Corzo, A., Dozier III, W. A., Loar, R. E., Kidd, M. T., & Tillman, P. B. (2010). Dietary limitation of isoleucine and valine in diets based on maize, soybean meal, and meat and bone meal for broiler chickens. British Poultry Science, 51(4), 558–563. https://doi.org/10.1080/00071668.2010.507242

Dibner, J. (1999). Feeding hatchling poultry. Avoid any delay. Feed International, December, 30–34.

Dooley, M., Peebles, E. D., Zhai, W., Mejia, L., Zumwalt, C. D., & Corzo, A. (2011). Effects of L-carnitine via in ovo injection with or without L-carnitine feed supplementation on broiler hatchability and post-hatch performance. Journal of Applied Poultry Research, 20(4), 491–497. https://doi.org/10.3382/japr.2010-00280

dos Santos, T. T., Corzo, A., Kidd, M. T., McDaniel, C. D., Torres, Filho, R. A., & Araújo, L. F. (2010). Influence of in ovo inoculation with various nutrients and egg size on broiler performance. Journal of Applied Poultry Research, 19(1), 1–12. https://doi.org/10.3382/japr.2009-00038

Dozier III, W. A., Corzo, A., Kidd, M. T., Tillman, P. B., & Branton, S. L. (2011). Determination of the 4th and 5th limiting amino acids of broilers fed diets containing maize, soybean meal, and poultry by-product meal from 28 to 42 days of age. British Poultry Science, 52(2), 238–244. https://doi.org/10.1080/00071668.2011.561282

Dzugan, M., Lis, M. W., Zagula, G., Puchalski, Cz., Droba, M., & Niedzi´olka, J. W. (2014). The effect of combined zinc-cadmium injection in ovo on the activity of indicative hydrolases in organs of newly hatched chicks. Journal of Microbiology, Biotechnology and Food Science, 3(5), 432–435.

Favero, A., Vieira, S. L., Angel, C. R., Bos-Mikich, A., Lothhammel, N., Taschetto, D., . . . Wardum, T. L. (2013). Development of bone in chick embryos from Cobb 500 breeder hens fed diets supplemented with zinc, manganese, and copper from inorganic and amino acid-complexed sources. Poultry Science, 92(2), 402–411. https://doi.org/10.3382/ps.2012-02670

Ferket, P. R. (2012, August). Embryo epigenetic response to breeder management and nutrition. In Salvador Proceedings: World’s Poultry Congress (1–11). Salvador, Brazil.

Geyra, A., Uni, Z., & Sklan, D. (2001). Enterocyte dynamics and mucosal development in the post-hatch chick. Poultry Science, 80(6), 776–782. https://doi.org/10.1093/ps/80.6.776

Goel, A., Bhanja, S. K., Mehra, M., Pande, V., & Majumdar, S. (2013). Effect of in ovo copper and iron feeding on post-hatch growth and differential expression of growth immunity related genes in broiler chickens. Indian Journal of Poultry Science, 48(3), 279–285.

Halevy, O., Geyra, A., Barak, M., Uni, Z., & Sklan, D. (2000). Early post-hatch starvation decreases satellite cell proliferation and skeletal muscle growth in chicks. Journal of Nutrition, 130(4), 858–864. https://doi.org/10.1093/jn/130.4.858

Henderson, S. N., Vicente, J. L., Pixley, C. M., Hargis, B. M., & Tellez, G. (2008). Effect of an Early Nutritional Supplement on Broiler Performance. International Journal of Poultry Science, 7(3), 211–214. https://doi.org/10.3923/ijps.2008.211.214

Joshua, P. P., Valli, C., & Balakrishnan, V. (2016). Effects of in ovo supplementation of Nano form of Zinc, Copper and Selenium on post-hatch performance of broiler chicken. Veterinary World, 9(3), 287–294. https://doi.org/10.14202/vetworld.2016.287-294

Juul-Madsen, H. R., Su, G., & Sorensen, P. 2004. Influence of early or late start of first feeding on growth and immune phenotype of broilers. British Poultry Science, 45(2), 210–222. https://doi.org/10.1080/00071660410001715812

Keralapurath, M. M., Corzo, A., Pulikanti, R., Zhai, W., & Peebles, E. D. (2010). Effects of in ovo injection of L-carnitine on hatchability and subsequent broiler performance and slaughter yield. Poultry Science, 89(7), 1497–1501. https://doi.org/10.3382/ps.2009-00551

Kop-Bozbay, C., & Ocak, N. (2015). Body weight, meat quality and blood metabolite responses to carbohydrate administration in the drinking water during pre-slaughter feed withdrawal in broilers. Journal of Animal Physiology and Animal Nutrition, 99(2), 290–298. https://doi.org/10.1111/jpn.12194

Kop-Bozbay, C., Konanç, K., Ocak, N., & Öztürk, E. (2013, September). The effects of in ovo injection of propolis and injection site on hatchability, hatching weight and survival of newly-hatched chicks (In Turkish). In 7. Ulusal Hayvan Besleme Kongresi. Ankara, Turkey.

McGruder, B. M., Zhai, W., Keralapurath, M. M., Bennett, L. W., Gerard, P. D., & Peebles, E. D. (2011). Effects of in ovo injection of electrolyte solutions on the pre- and post-hatch physiological characteristics of broilers. Poultry Science, 90(5), 1058–1066. https://doi.org/10.3382/ps.2010-00893

Noy, Y., & Uni, Z. (2010). Early nutritional strategies. World’s Poultry Science Journal, 66(4), 639–646. https://doi.org/10.1017/S0043933910000620

Noy, Y., Geyra, A., & Sklan, D. (2001). The effect of early feeding on growth and small intestinal development in the post-hatch poult. Poultry Science, 80(7), 912–919. https://doi.org/10.1093/ps/80.7.912

Ohta, Y., & Kidd, M. T. (2001). Optimum site for in ovo amino acid injection in broiler breeder eggs. Poultry Science, 80(10), 1425–1429. https://doi.org/10.1093/ps/80.10.1425

Ohta, Y., Tsushima, N., Koide, K., Kidd, M. T., & Ishibashi, T. (1999). Effect of amino acid injection in broiler breeder egg on embryonic growth and hatchability of chicks. Poultry Science, 78(11); 1493–1498. https://doi.org/10.1093/ps/78.11.1493

Oliveira, T. F. B., Bertechini, A. G., Bricka, R. M., Kim, E. J., Gerard, P. D., & Peebles, E. D. (2015). Effects of in ovo injection of organic zinc, manganese and copper on the hatchability and bone parameters of broiler hatchlings. Poultry Science, 94(10), 2488–2494. https://doi.org/10.3382/ps/pev248

Ospina-Rojas, I. C., Murakami, A. E., Do Amaral Duarte, C. R., Eyng, C., Lopes De Oliveira, C. A., & Janeiro, V. (2014). Valine, isoleucine, arginine and glycine supplementation of low-protein diets for broiler chickens during the starter and grower phases. British Poultry Science, 55(6), 766–773. https://doi.org/10.1080/00071668.2014.970125

Panda, A. K., Rama RAO, S. S., Raju, M. V. L. N., & Sharma, S. S. (2008). Effect of probiotic (Lactobacillus sporogenes) feeding on egg production and quality, yolk cholesterol and humoral immune response of white leghorn layer breeders. Journal of the Science of Food and Agriculture, 88(1), 43–47. https://doi.org/10.1002/jsfa.2921

Pinchasov, Y., & Noy, Y. (1993). Comparison of post-hatch holding time and subsequent early performance of broiler chicks and turkey poults. British Poultry Science, 34(1), 111–120. https://doi.org/10.1080/00071669308417567

Rath, N. C. (2000). Factors Regulating Bone Maturity and Strength in Poultry. Poultry Science, 79(7), 1024–1032. https://doi.org/10.1093/ps/79.7.1024

Richards, M. P. (1997). Trace mineral metabolism in the avian embryo. Poultry Science, 76(1), 152–164. https://doi.org/10.1093/ps/76.1.152

Ricklefs, R. E. (1987). Comparative analysis of avian embryonic growth. Journal of Experimental Zoology. Supplement, 1, 309–323.

Romanoff, A. L. (1960). The avian embryo: Structural and Functional Development. New York, NY: Macmillan.

Sarica, M., Karacay, N., Ocak, N., Yamak, U., Kop, C., & Altop, A. (2009). Growth, slaughter and gastrointestinal tract traits of three turkey genotypes under barn and free-range housing systems. British Poultry Science, 50(4), 487–494. https://doi.org/10.1080/00071660903110919

SAS Institute Inc. (2010). SAS Proprietary Software Release 9.2. Cary, NC: SAS Inst. Inc.

Sauer, G. R., Wu, L. N., Iijima, M., & Wuthier, R. E. (1997). The influence of trace elements on calcium phosphate formation by matrix vesicles. Journal of Inorganic Biochemistry, 65(1), 57–65. https://doi.org/10.1016/S0162-0134(96)00080-3

Schulte-Drüggelte, R. (2015). The importance of quality nutrition and management on the breeder farm. International Hatchery Practice, 29(6), 25–26. https://doi.org/10.12968/prma.2015.25.6.29

Shafey, T. M., Alodan, M. A., Al-Ruqaie, S. I. M., & Abouheif, M. A. (2012). In ovo feeding of carbohydrates and incubated at a high incubation temperature on hatchability and glycogen status of chicks. South African Journal of Animal Science, 42(3), 210–220. https://doi.org/10.4314/sajas.v42i3.2

Sklan, D. (2001). Development of the digestive tract of poultry. World’s Poultry Science Journal, 57(4), 415–428. https://doi.org/10.1079/WPS20010030

Starcher, B. C., Hill, C. H., & Madaras, J. G. (1980). Effect of zinc deficiency of bone collagenase and collagen turnover. Journal of Nutrition, 110(10), 2095–2102. https://doi.org/10.1093/jn/110.10.2095

Tako, E., Ferket, P. R., & Uni, Z. (2005). Changes in chicken intestinal zinc exporter mRNA expression and small intestinal functionality following intra-amniotic zinc-methionine administration. Journal of Nutrition and Biochemistry, 16(6), 339–346. https://doi.org/10.1016/j.jnutbio.2005.01.002

Uni, Z., Geyra, A., Ben-Hur, H., & Sklan, D. (2000). Small intestinal development in the young chick: crypt formation and enterocyte proliferation and migration. British Poultry Science, 41(5), 544–551. https://doi.org/10.1080/00071660020009054

Uni, Z., & Smith, R. H. (2017). The effects of in-ovo feeding. Retrieved from https://zootecnicainternational.com/featured/effects-ovo-feeding/

Uni, Z., Smirnov, A., & Sklan, D. (2003). Pre- and post-hatch development of goblet cells in the broiler small intestine: effect of delayed access to feed. Poultry Science, 82(2), 320–327. https://doi.org/10.1093/ps/82.2.320

Wang, Y. W., Ning, D., Peng, Y. Z., & Guo, Y. M. (2013). Effects of dietary L-carnitine supplementation on growth performance, organ weight, biochemical parameters and ascites susceptibility in broilers reared under low-temperature environment. Asian-Australasian Journal of Animal Science, 26(2), 233–240. https://doi.org/10.5713/ajas.2012.12407

Yair, R., & Uni, Z. (2011). Content and uptake of minerals in the yolk of broiler embryos during incubation and effect of nutrient enrichment. Poultry Science, 90(7), 1523–1531. https://doi.org/10.3382/ps.2010-01283

Yair, R., Shahar, R., & Uni, Z. (2013). Pre-natal nutritional manipulation by in ovo enrichment influences bone structure, composition and mechanical properties. Journal of Animal Science, 91(6), 2784–2793. https://doi.org/10.2527/jas.2012-5548

Yamak, U. S., Sarica, M., & Boz, M. A. (2014). Comparing slow-growing chickens produced by two- and three-way crossing with commercial genotypes. 1. Growth and carcass traits. European Poultry Science (Archiv für Geflügelkunde), 78, 1–11.

Zhai, W., Bennett, L. W., Gerard, P. D., Pulikanti, R., & Peebles, E. D. (2011). Effects of in ovo injection of carbohydrates on somatic characteristics and liver nutrient profiles of broiler embryos and hatchlings. Poultry Science, 90(12), 2681–2688. https://doi.org/10.3382/ps.2011-01532




DOI: http://dx.doi.org/10.14720/aas.2020.115.2.562

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Vaibhav Bhagwan AWACHAT, Arumbackam Vijayarangam ELANGOVAN, Olajide Mark SOGUNLE, Corbon Godfrey DAVID, Jyotirmoy GHOSH, Shivakumar Nisarani Kollurappa GOWDA, Subrat Kumar BHANJA, Samir MAJUMDAR

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941