An overview of applications in pineapple agroindustrial residues

Franklyn da Cruz LIMA, Andressa Juliana Almeida SIMÕES, Isabela Maria Monteiro VIEIRA, Daniel Pereira SILVA, Denise Santos RUZENE

Abstract


Industrial food production causes a high amount of waste. This waste must be taken to a suitable location where it can be further processing. During industrial processing of the pineapple, about 50 % of the mass of the fruit ends up being discarded becoming a residue. Researchers have studied these residues in order to add value to these by-products, to reduce disposal costs and guarantee environmental sustainability. This work investigates the development characteristics of research on agroindustrial residues of pineapple based on bibliometric methods to explore the structure of knowledge in this field over the years, according to the year of publication, periodicals, country, authors, area of knowledge, institutions, keywords, subject type, and citation analysis. In total 927 articles were found and after a careful analysis and selection of papers, 364 articles remained of which 82 % were published only in the last decade. Most studies focused on agricultural and biological sciences. About 1183 authors from 50 different countries contributed to this subject, in which India has the largest number of publications. The results obtained with this study, highlighting the different uses for pineapple residues, can provide valuable information for researchers interested in the field of agroindustrial wastes.

Keywords


bibliometric analysis; residues; agroindustrial wastes; pineapple; waste management

Full Text:

PDF

References


Aleixandre, J.L., Aleixandre-Tudó, J.L., Bolaños-Pizarro, M., Aleixandre-Benavent, R. (2015). Mapping the scientific research in organic farming: a bibliometric review. Scientometrics, 105, 295–309. doi:10.1007/s11192-015-1677-4

Alexandre, H.V., da Silva, F.L.H., Gomes, J.P., da Silva, O.S., Carvalho, J.P.D., de Lima, E.E. (2013). Drying kinetics of enriched pineapple residue | Cinética de secagem do resíduo de abacaxi enriquecido. Revista Brasileira de Engenharia Agrícola e Ambiental, 17 (6), 640–646. doi:10.1590/S1415-43662013000600010

Alias, N.H., & Abbas, Z. (2017). Preliminary investigation on the total phenolic content and antioxidant activity of pineapple wastes via microwave-Assisted extraction at fixed microwave power. Chemical Engineering Transactions, 56, 1675-1680.

Allen, T.J. (1969). Information needs and uses. Annual Review of Information Science and Technology, 4, 3–29.

Aruldass, C.A., Aziz, A., Venil, C.K., Khasim, A.R., Ahmad, W.A. (2016). Utilization of agro-industrial waste for the production of yellowish-orange pigment from Chryseobacterium artocarpi CECT 8497. International Biodeterioration and Biodegradation, 113, 342–349. doi:10.1016/j.ibiod.2016.01.024

Arun, C., & Sivashanmugam, P. (2015). Solubilization of waste activated sludge using a garbage enzyme produced from different pre-consumer organic waste. RSC Advances, 5 (63), 51421–51427. doi:10.1039/C5RA07959D

Aworanti, O.A., Agarry, S.E., Ogunleye, O.O. (2017). Biomethanization of the mixture of cattle manure, pig manure and poultry manure in co-digestion with waste peels of pineapple fruit and content of chicken-gizzard - part ii: Optimization of process variables. The Open Biotechnology Journal, 11, 54–71. doi:10.2174/1874070701711010054

Bartol, T., & Mackiewicz-Talarczyk, M. (2015). Bibliometric Analysis of Publishing Trends in Fiber Crops in Google Scholar, Scopus, and Web of Science. Journal of Natural Fibers, 12 (6), 531–541. doi:10.1080/15440478.2014.972000

Borges, C.D., Chim, J.F., Leitão, A.M., Pereira, E., Luvielmo, M.D.M. (2004). Produção de suco de abacaxi obtido a partir dos resíduos da indústria conserveira. Boletim do Centro de Pesquisa de Processamento de Alimentos, 22 (1), 23–34. doi:10.5380/cep.v22i1.1177

Braga, A.P., Amâncio, A.V.A.F., Gonçalves, J. S, Cortes Assis, L.C.S.L.C, Souza, C.M.S., Maia, I.S.A.S., Gerra, D.G.F. (2016). Ruminal degradability of agro-industrial fruit residues. Semina: Ciências Agrárias, 37(1), 279–292. doi:10.5433/1679-0359.2016v37n1p279

Brito Neto, J.F., Pereira, W.E., Sobrinho, R.G.S., Barbosa, J. A, Santos, D.P. (2008). Productive aspects of the family and commercial pineapple culture in the state of Paraíba. Caatinga, 21 (4), 43–50.

Chaurasiya, R.S., Sakhare, P.Z., Bhaskar, N., Hebbar, H.U. (2015). Efficacy of reverse micellar extracted fruit bromelain in meat tenderization. Journal of Food Science and Technology, 52(6), 3870–3880. doi:10.1007/s13197-014-1454-z

Chen, H., Jiang, W., Yang, Y., Yang, Y., Man, X. (2016). State of the art on food waste research: a bibliometrics study from 1997 to 2014. Journal of Cleaner Production, 140, 840-846. doi:10.1016/j.jclepro.2015.11.085

Coêlho, D.D.F., Silva, C.A., Machado, C.S., Silveira, E., Tambourgi, E.B. (2015). Use of artificial neural networks to predict aqueous two-phases system optimal conditions on Bromelain’s purification. Chemical Engineering Transactions, 43, 1417–1422.

Conesa, C., Seguí, L., Laguarda-Miró, N., Fito, P. (2016). Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food and Bioproducts Processing, 100, 203–213. doi:10.1016/j.fbp.2016.07.001

Correia, R.T.P., McCue, P., Magalhães, M.M.A., Macêdo, G.R., Shetty, K. (2004). Production of phenolic antioxidants by the solid-state bioconversion of pineapple waste mixed with soy flour using Rhizopus oligosporus. Process Biochemistry, 39 (12), 2167–2172. doi:10.1016/j.procbio.2003.11.034

Costa, C., Biocca, M., Pallottino F., Nardi P., Figorilli S. (2017). Structure of the precision agriculture research in Italy from 2000 to 2016: A term mapping approach. Chemical Engineering Transactions, 58, 643-648.

Dai, H., Huang, H. (2016). Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Carbohydrate Polymers, 148, 1–10. doi:10.1016/j.carbpol.2016.04.040

Damasceno, K. A, Gonçalves, C.A. S., Pereira, G. S., Costa, L.L, Campagnol, P.C.B, Almeida, P. L, Arantes-Pereira, L. (2016). Development of Cereal Bars Containing Pineapple Peel Flour (Ananas comosus L. Merril). Journal of Food Quality, 39 (5), 417–424. doi:10.1111/jfq.12222

Díaz-Vela, J., Totosaus, A., Escalona-Buendía, H.B., Pérez-Chabela, M.L. (2017). Influence of the fiber from agro-industrial co-products as functional food ingredient on the acceptance, neophobia and sensory characteristics of cooked sausages. Journal of Food Science and Technology, 54 (2), 379–385. doi:10.1007/s13197-016-2473-8

Dotto, G.L., Meili, L., De Souza Abud, A.K., Tanabe, E.H., Bertuol, D.A., Foletto, E.L. (2016). Comparison between Brazilian agro-wastes and activated carbon as adsorbents to remove Ni(II) from aqueous solutions. Water Science & Technology, 73 (11), 2713–2721. doi:10.2166/wst.2016.095

Elsevier (2018). Scopus. Retrieved from https://www.elsevier.com/__data/assets/pdf_file/0008/208772/ACAD_R_SC_FS.pdf

Ensslin, L., Ensslin, S.R., Pinto, H. de M. (2013). Processo de investigação e análise bibliométrica: avaliação da qualidade dos serviços bancários. Revista de Administração Contemporânea, 17 (3), 325–349. doi:10.1590/S1415-65552013000300005

Fagundes, N.S., & Fagundes, N.S. (2010). Restos culturais do abacaxizeiro na alimentação de ruminantes. Revista Eletrônica Nutritime, 113 (7), 1243–1247.

FAO (2015). FAOSTAT database collections. Retrieved from http://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2015_agr_outlook-2015-en

Ferrari, R.A., Colussi, F., Ayub, R.A. (2004). Caracterização de subprodutos da industrialização do maracujá-aproveitamento das sementes. Revista Brasileira de Fruticultura, 26 (1), 101–102. doi:10.1590/S0100-29452004000100027

Gandhi, N., Sirisha, D., Chandra Shekar, K.B., Asthana, S. (2012). Removal of fluoride from water and waste water by using low cost adsorbents. International Journal of ChemTech Research, 4 (4), 1646–1653.

Geng, Y., Chen, W., Liu, Z., Chiu, A.S.F., Han, W., Liu, Z., Zhong, S., Cui, X. (2017). A bibliometric review: Energy consumption and greenhouse gas emissions in the residential sector. Journal of Cleaner Production, 159, 301–316. doi:10.1016/j.jclepro.2017.05.091

Hameed, B.H., Krishni, R.R., Sata, S.A. (2009). A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. Journal of Hazardous Materials, 162 (1), 305–311. doi:10.1016/j.jhazmat.2008.05.036

Harris, S. A.D., & Chidambaram, R. (2015). Production of xylanase from watermelon rind by bacillus weihenstephanesis strain ANR1. International Journal of ChemTech Research, 8 (5), 1–5.

Hočevar, M., & Bartol, T. (2016). Agriculture vs.Social sciences: subject classification and sociological conceptualization of rural tourism in Scopus and Web of Science. Acta agriculturae Slovenica, 108 (1), 33–44. doi:10.14720/aas.2016.108.1.1

IBGE (2017). IBGE. Levantamento Sistemático da Produção Agrícola. Retrieved from ftp://ftp.ibge.gov.br/Producao_Agricola/Levantamento_Sistematico_da_Producao_Agricola_[mensal]/Fasciculo/2015/lspa_201501.pdf

Isitua, C.C., & Ibeh, N.I. (2010). Novel method of wine production from banana (musa acuminata) and pineapple (ananas comosus) wastes. African Journal of Biotechnology, 9 (44), 7521–7524. doi:10.5897/AJB10.999

Kannahi, M., & Elangeswari, S. (2015). Enhanced production of cellulase on different fruit peel under submerged fermentation. International Journal of Pharmaceutical Sciences Review and Research, 32 (2), 161–165.

Ketnawa, S., Chaiwut, P., Rawdkuen, S. (2012). Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing, 90 (3), 385–391. doi:10.1016/j.fbp.2011.12.006

Khedkar, M.A., Nimbalkar, P.R., Gaikwad, S.G., Chavan, P. V., Bankar, S.B. (2017). Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: Drying kinetics study. Bioresource Technology, 225, 359–366. doi:10.1016/j.biortech.2016.11.058

Kraiprom, T., Prasanpanich, S., Kungmun, P., Sivijchai, S., Tumwasorn, S. (2013). Effect of fermented by-product and rice straw on milk yield and fatty acid composition in dairy cows. Kasetsart Journal - Natural Science, 47 (2), 217–227.

Kumbhar, J.V., Rajwade, J.M., Paknikar, K.M. (2015). Fruit peels support higher yield and superior quality bacterial cellulose production. Applied Microbiology and Biotechnology, 99 (16), 6677–6691. doi:10.1007/s00253-015-6644-8

Lun, O.K., Wai, T.B., Ling, L.S. (2014). Pineapple cannery waste as a potential substrate for microbial biotranformation to produce vanillic acid and vanillin. International Food Research Journal, 21 (3), 953–958.

Madurai, R., John, S., Bhavani, I.L.G. (2010). Study on preparation, nutrient analysis and shelf life of biovinegar and its formulations. Biosciences Biotechnology Research Asia, 7 (2), 849–855.

Mahamad, M.N., Zaini, M.A.A., Zakaria, Z.A. (2015). Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. International Biodeterioration & Biodegradation, 102, 274–280. doi:10.1016/j.ibiod.2015.03.009

Manosroi, A., Chankhampan, C., Pattamapun, K., Manosroi, W., Manosroi, J. (2014). Antioxidant and gelatinolytic activities of papain from papaya latex and bromelain from pineapple fruits. Chiang Mai Journal of Science, 41 (3), 635–648.

Mao, G., Huang, N., Chen, L., Wang, H. (2018). Research on biomass energy and environment from the past to the future: A bibliometric analysis. Science of the Total Environment, 635, 1081–1090. doi:10.1016/j.scitotenv.2018.04.173

Martins, B.C., Rescolino, R., Coelho, D.F., Zanchetta, B., Tambourgi, E.B., Silveira, E. (2014). Characterization of Bromelain from Ananas Comosus Agroindustrial Residues Purified by Ethanol Factional Precipitation. Chemical Engineering Transactions, 37, 781–786.

Marx, W., Haunschild, R., Bornmann, L. (2017). Climate change and viticulture - A quantitative analysis of a highly dynamic research field. Journal of Grapevine Research, 56 (1), 35-43. doi:10.3390/cli5030046

Marx, W., Haunschild, R., Bornmann, L. (2017). Global warming and tea production - The bibliometric view on a newly emerging research topic. Climate, 5 (3), 46. doi:10.3390/cli5030046

Mensah, J.K.M., & Twumasi, P. (2017). Use of pineapple waste for single cell protein (SCP) production and the effect of substrate concentration on the yield. Journal of Food Process Engineering, 40 (3), e12478. doi:10.1111/jfpe.12478

Milanez, D.H., Noyons, E., Faria, L.I.L. (2016). A delineating procedure to retrieve relevant publication data in research areas: the case of nanocellulose. Scientometrics, 107 (2), 627–643. doi:10.1007/s11192-016-1922-5

Morgado, I.F., Aquino, C.N.P., Terra, D.C.T. (2004). Aspectos econômicos da cultura do abacaxi: sazonalidade de preços no Estado do Rio de Janeiro. Revista Brasileira de Fruticultura, 26 (1), 44–47. doi:10.1590/S0100-29452004000100013

Mugnaini, R., Jannuzzi, P. de M., Quoniam, L. (2004). Indicadores bibliométricos da produção científica brasileira: uma análise a partir da base Pascal. Ciência da Informação, 33 (2), 123–131. doi:10.1590/S0100-19652004000200013

Nakthong, N., Wongsagonsup, R., Amornsakchai, T. (2017). Characteristics and potential utilizations of starch from pineapple stem waste. Industrial Crops and Products, 105, 74–82. doi:10.1016/j.indcrop.2017.04.048

Nanda, S., Isen, J., Dalai, A.K., Kozinski, J.A. (2016). Gasification of fruit wastes and agro-food residues in supercritical water. Energy Conversion and Management, 110, 296–306. doi:10.1016/j.enconman.2015.11.060

Navid, S., Hilmi, M., Sazili, A.Q., Sheikhlar, A. (2010). Effects of papaya leaf meal, pineapple skin meal and vitamin D3 supplementation on meat quality of spent layer chicken. Journal of Animal and Veterinary Advances, 9 (22), 2873–2876. doi:10.3923/javaa.2010.2873.2876

Nor Halaliza, A., & Zulkifly, A. (2017). Microwave-assisted extraction of phenolic compound from pineapple skins: The optimum operating condition and comparison with soxhlet extraction | Pengekstrakan sebatian fenolik daripada kulit nenas dengan bantuan gelombang mikro: Pengoptimuman keadaan pen. The Malaysian Journal of Analytical Sciences, 21 (3), 60–699. doi:10.17576/mjas-2017-2103-18

Novaes, L.C.L., Ebinuma, V.C.S., Mazzola, P.G., Júnior, A.P. (2013). Polymer-based alternative method to extract bromelain from pineapple peel waste. Biotechnology and Applied Biochemistry, 60 (5), 527–535. doi:10.1002/bab.1121

Ogunleye, O.O., Aworanti, O.A., Agarry, S.E., Aremu, M.O. (2016). Enhancement of animal waste biomethanation using fruit waste as co-substrate and chicken rumen as inoculums. Energy Sources, 38 (11), 1653–1660. doi:10.1080/15567036.2014.933286

Orlandelli, R.C., Santos, M.S., Polonio, J.C., de Azevedo, J.L., Pamphile, J.A. (2017). Use of agro-industrial wastes as substrates for α-amylase production by endophytic fungi isolated from Piper hispidum Sw. | Uso de resíduos agroindustriais para a produção de α-amilase por fungos endofíticos isolados de Piper hispidum Sw.. Acta Scientiarum Technology, 39 (3), 255–261. doi:10.4025/actascitechnol.v39i3.30067

Pelizer, L.H., Pontieri, M.H., Moraes, I. de O. (2007). Utilização de Resíduos Agro-Industriais em Processos Biotecnológicos como Perspectiva de Redução do Impacto Ambiental. Journal of Technology Management & Innovation, 2 (1), 118–127.

Praveena, R. J., & Estherlydia, D. (2014). Comparative study of phytochemical screening and antioxidant capacities of vinegar made from peel and fruit of pineapple (Ananas comosus L.). International Journal of Pharma and Bio Sciences, 5 (4), 394–403.

Ramos, G.F., Júnior, C.D.S., Oliveira, J.A., Vasconcelos, T.S., Budiño, F.E.L., Ruiz, U.S. (2016). Performance, diarrhea frequency, feces production and costs of diets with increasing levels of pineapple byproducts in weaned piglets | Desempenho, frequência de diarreia, produção de fezes e custos de dietas com teores crescentes de farelo de abacaxi par. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68 (6), 1505–1515. doi:10.1590/1678-4162-8422

Rao, R.A.K., & Khan, U. (2017). Adsorption of Ni(II) on alkali treated pineapple residue (Ananas comosus L.): Batch and column studies. Groundwater Sustainable Development, 5, 244–252. doi:10.1016/j.gsd.2017.08.002

Richardson, K.C. (1967). Submerged acetification of a vinegar base produced from waste pineapple juice. Biotechnology and Bioengineering, 9 (2), 171–186. doi:10.1002/bit.260090204

Roda, A., Lucini, L., Torchio, F., Dordoni, R., De Faveri, D.M., Lambri, M. (2017). Metabolite profiling and volatiles of pineapple wine and vinegar obtained from pineapple waste. Food Chemistry, 229, 734-742. doi:10.1016/j.foodchem.2017.02.111

Romero-Cano, L.A., García-Rosero, H., Gonzalez-Gutierrez, L.V., Baldenegro-Pérez, L.A., Carrasco-Marín, F. (2017). Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution. Journal of Cleaner Production, 162, 195–204. doi:10.1016/j.jclepro.2017.06.032

Santos, R.M., Neto, W.P.F., Silvério, H.A., Martins, D.F., Dantas, N.O., Pasquini, D. (2013). Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products, 50, 707–714. doi:10.1016/j.indcrop.2013.08.049

Selvakumar, P., & Sivashanmugam, P. (2017). Optimization of lipase production from organic solid waste by anaerobic digestion and its application in biodiesel production. Fuel Processing Technology, 165, 1–8. doi:10.1016/j.fuproc.2017.04.020

Shamsul, N.S., Kamarudin, S.K., Kofli, N.T., Rahman, N.A. (2017). Optimization of bio-methanol production from goat manure in single stage bio-reactor. International Journal of Hydrogen Energy, 42 (14), 9031–9043. doi:10.1016/j.ijhydene.2016.05.228

Shifera, L., Siraj, K., Yifru, A. (2017). Adsorption of lead (II) and chromium (VI) onto activated carbon prepared from pineapple peel: Kinetics and thermodynamic study. Indian Journal of Chemical Technology, 24, 145–152.

Silva, P.A.S. (2016). Transformações na organização produtiva da agricultura camponesa: um estudo da produção de abacaxi de Sergipe. Universidade federal de Sergipe – Programa de Pós-Graduação em Geografia.

Silvestre, M.P.C., Carreira, R.L., Silva, M.R., Corgosinho, F.C., Monteiro, M.R.P., Morais, H.A. (2012). Effect of pH and Temperature on the Activity of Enzymatic Extracts from Pineapple Peel. Food Bioprocess Technology, 5(5), 1824–1831. doi:10.1007/s11947-011-0616-5

Sodtipinta, J., Ieosakulrat, C., Poonyayant, N., Kidkhunthod, P., Chanlek, N., Amornsakchai, T., Pakawatpanurut, P. (2017). Interconnected open-channel carbon nanosheets derived from pineapple leaf fiber as a sustainable active material for supercapacitors. Industrial Crops and Products, 104, 13–20. doi:10.1016/j.indcrop.2017.04.015

Solidum, J.N. (2013). Peel wastes of Ananas comosus (L.) Merr., Sandoricum koetjape Merr., Citrus nobilis Lour. as lead and cadmium biosorbent in Manila tap water. Journal of Environmental Science and Management, 16 (2), 28–35.

Spir, L.G., Ataide, J.A., De Lencastre Novaes, L.C., Moriel, P., Mazzola, P.G., De Borba Gurpilhares, D., Tambourgi, E.B. (2015). Application of an aqueous two-phase micellar system to extract bromelain from pineapple (Ananas comosus) peel waste and analysis of bromelain stability in cosmetic formulations. Biotechnology Progress, 31 (4), 937–945. doi:10.1002/btpr.2098

Stopar, K. (2016). Presence of nanotechnology in agriculture: bibliometric approach. Acta agriculturae Slovenica, 107 (2), 497-507. doi:10.14720/aas.2016.107.2.20

Tang, P.-L., Hassan, O., Md-Jahim, J., Mustapha, W.A.W., Maskat, M.Y. (2014). Fibrous Agricultural Biomass as a Potential Source for Bioconversion to Vanillic Acid. International Journal of Polymer Science, 2014, 1–8. doi:10.1155/2014/509035

Timofiecsyk, F.D.R., & Pawlowsky, U. (2000). Minimização de resíduos na indústria de alimentos: revisão. Boletim do Centro de Pesquisa de Processamento de Alimentos, 18 (2), 221–236. doi:10.5380/cep.v18i2.1212

Van Eck, N.J., & Waltman L. (2018). VOSviewer Manual. Retrieved from http://www.vosviewer.com/getting-started

Van Eck, N.J., & Waltman, L. (2014). Visualizing bibliometric networks. In Y.

Ding, R. Rousseau, D. Wolfram (Eds.), Measuring scholarly impact: Methods and practice (pp. 285–320). Springer. doi:10.1007/978-3-319-10377-8_13

Venkateswarulu, T.C., Bodaiah, B., John Babu, D., Venkata Naraya, A., Evangelin, Y. (2015). Bioethanol production by yeast fermentation using pomace waste. Research Journal of Pharmacy and Technology, 8 (7), 841–844. doi:10.5958/0974-360X.2015.00137.7

Wang, Q., Yang, Z., Yang, Y., Long, C., Li, H. (2014). A bibliometric analysis of research on the risk of engineering nanomaterials during 1999–2012. Science of the Total Environment, 473–474, 483–489. doi:10.1016/j.scitotenv.2013.12.066

Yamuna, M., & Kamaraj, M. (2016). Pineapple peel waste activated carbon as an adsorbent for the effective removal of methylene blue dye from aqueous solution. International Journal of ChemTech Research, 9 (5), 544–550.

Yang, J., Tan, H., Cai, Y. (2016). Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues. Journal of Dairy Science, 99 (7), 5325–5334. doi:10.3168/jds.2016-10952

Zhang, K., Wang, Q., Liang, Q.-M., Chen, H. (2016). A bibliometric analysis of research on carbon tax from 1989 to 2014. Renewable & Sustainable Energy Reviews, 58, 297–310. doi:10.1016/j.rser.2015.12.089

Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98 (4), 929–935. doi:10.1016/j.biortech.2006.02.039




DOI: http://dx.doi.org/10.14720/aas.2018.111.2.18

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Franklyn da Cruz Lima, Andressa Juliana Almeida Simões, Isabela Maria Monteiro Vieira, Daniel Pereira Silva, Denise Santos Ruzene

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941