Influence of in ovo and pre-starter zinc and copper supplementation on growth performance and gastrointestinal tract development of broiler chickens
Abstract
Keywords
Full Text:
PDFReferences
Baéza, E., Gondret, F., Chartrin, P., Le Bihan-Duval, E., Berri, C., Gabriel, I., . . . Duclos, M. J. (2015). The ability of genetically lean or fat slow-growing chickens to synthesize and store lipids is not altered by the dietary energy source. Animal, 9(10), 1643–1652. https://doi.org/10.1017/S1751731115000683
Bakyaraj, S., Bhanja, S. K., Majumdar, S., & Dash, B. (2012). Modulation of post-hatch growth and immunity through in ovo supplemented nutrients in broiler chickens. Journal of Science Food and Agriculture, 92(2), 313–320. https://doi.org/10.1002/jsfa.4577
Bao, Y. M., Choct, M., Iji, P. A., & Bruerton, K. (2007). Effect of organically complexed copper, Iron, manganese and zinc on broiler performance, mineral excretion and accumulation in tissues. Journal of Applied Poultry Research, 16(3), 448–455. https://doi.org/10.1093/japr/16.3.448
Bhanja, S. K., Goel, A., Pandey, N., Mehra, M., Majumdar, S., & Mandal, A. B. (2015). In ovo carbohydrate supplementation modulates growth and immunity-related genes in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 99(1), 163–173. https://doi.org/10.1111/jpn.12193
Bhanja, S. K., & Mandal, A. B. (2005). Effect of in ovo injection of critical amino acids on pre and post-hatch growth, immunocompetence and development of digestive organs in broiler chickens. Asian-Australian Journal of Animal Science, 18(4), 524–531. https://doi.org/10.5713/ajas.2005.524
Bottje, W., Wolfenden, A., Ding, L., Wolfenden, R., Morgan, M., Pumford, . . . Hargis, B. (2010). Improved hatchability and post-hatch performance in turkey poults receiving a dextrin-iodinated casein solution in ovo. Poultry Science, 89(12), 2646–2650. https://doi.org/10.3382/ps.2010-00932
Burnham, D., Emmans, G. C., & Gous, R. M. (1992). Isoleucine requirements of the chicken: The effect of excess leucine and valine on the response to isoleucine. British Poultry Science, 33(1), 71–87. https://doi.org/10.1080/00071669208417445
Careghi, C., Tona, K., Onagbesan, O., Buyse, J., Decuypere, E., & Bruggeman, V. (2005). The effects of the spread of hatch and interaction with delayed feed access after hatch on broiler performance until seven days of age. Poultry Science, 84(8), 1314–1320. https://doi.org/10.1093/ps/84.8.1314
Carlton, W. W., & Henderson, W. (1964). Skeletal lesions in experimental copper-deficiency in chickens. Avian Diseases, 8(1), 48–55. https://doi.org/10.2307/1587818
Corzo, A., Dozier III, W. A., Loar, R. E., Kidd, M. T., & Tillman, P. B. (2010). Dietary limitation of isoleucine and valine in diets based on maize, soybean meal, and meat and bone meal for broiler chickens. British Poultry Science, 51(4), 558–563. https://doi.org/10.1080/00071668.2010.507242
Dibner, J. (1999). Feeding hatchling poultry. Avoid any delay. Feed International, December, 30–34.
Dooley, M., Peebles, E. D., Zhai, W., Mejia, L., Zumwalt, C. D., & Corzo, A. (2011). Effects of L-carnitine via in ovo injection with or without L-carnitine feed supplementation on broiler hatchability and post-hatch performance. Journal of Applied Poultry Research, 20(4), 491–497. https://doi.org/10.3382/japr.2010-00280
dos Santos, T. T., Corzo, A., Kidd, M. T., McDaniel, C. D., Torres, Filho, R. A., & Araújo, L. F. (2010). Influence of in ovo inoculation with various nutrients and egg size on broiler performance. Journal of Applied Poultry Research, 19(1), 1–12. https://doi.org/10.3382/japr.2009-00038
Dozier III, W. A., Corzo, A., Kidd, M. T., Tillman, P. B., & Branton, S. L. (2011). Determination of the 4th and 5th limiting amino acids of broilers fed diets containing maize, soybean meal, and poultry by-product meal from 28 to 42 days of age. British Poultry Science, 52(2), 238–244. https://doi.org/10.1080/00071668.2011.561282
Dzugan, M., Lis, M. W., Zagula, G., Puchalski, Cz., Droba, M., & Niedzi´olka, J. W. (2014). The effect of combined zinc-cadmium injection in ovo on the activity of indicative hydrolases in organs of newly hatched chicks. Journal of Microbiology, Biotechnology and Food Science, 3(5), 432–435.
Favero, A., Vieira, S. L., Angel, C. R., Bos-Mikich, A., Lothhammel, N., Taschetto, D., . . . Wardum, T. L. (2013). Development of bone in chick embryos from Cobb 500 breeder hens fed diets supplemented with zinc, manganese, and copper from inorganic and amino acid-complexed sources. Poultry Science, 92(2), 402–411. https://doi.org/10.3382/ps.2012-02670
Ferket, P. R. (2012, August). Embryo epigenetic response to breeder management and nutrition. In Salvador Proceedings: World’s Poultry Congress (1–11). Salvador, Brazil.
Geyra, A., Uni, Z., & Sklan, D. (2001). Enterocyte dynamics and mucosal development in the post-hatch chick. Poultry Science, 80(6), 776–782. https://doi.org/10.1093/ps/80.6.776
Goel, A., Bhanja, S. K., Mehra, M., Pande, V., & Majumdar, S. (2013). Effect of in ovo copper and iron feeding on post-hatch growth and differential expression of growth immunity related genes in broiler chickens. Indian Journal of Poultry Science, 48(3), 279–285.
Halevy, O., Geyra, A., Barak, M., Uni, Z., & Sklan, D. (2000). Early post-hatch starvation decreases satellite cell proliferation and skeletal muscle growth in chicks. Journal of Nutrition, 130(4), 858–864. https://doi.org/10.1093/jn/130.4.858
Henderson, S. N., Vicente, J. L., Pixley, C. M., Hargis, B. M., & Tellez, G. (2008). Effect of an Early Nutritional Supplement on Broiler Performance. International Journal of Poultry Science, 7(3), 211–214. https://doi.org/10.3923/ijps.2008.211.214
Joshua, P. P., Valli, C., & Balakrishnan, V. (2016). Effects of in ovo supplementation of Nano form of Zinc, Copper and Selenium on post-hatch performance of broiler chicken. Veterinary World, 9(3), 287–294. https://doi.org/10.14202/vetworld.2016.287-294
Juul-Madsen, H. R., Su, G., & Sorensen, P. 2004. Influence of early or late start of first feeding on growth and immune phenotype of broilers. British Poultry Science, 45(2), 210–222. https://doi.org/10.1080/00071660410001715812
Keralapurath, M. M., Corzo, A., Pulikanti, R., Zhai, W., & Peebles, E. D. (2010). Effects of in ovo injection of L-carnitine on hatchability and subsequent broiler performance and slaughter yield. Poultry Science, 89(7), 1497–1501. https://doi.org/10.3382/ps.2009-00551
Kop-Bozbay, C., & Ocak, N. (2015). Body weight, meat quality and blood metabolite responses to carbohydrate administration in the drinking water during pre-slaughter feed withdrawal in broilers. Journal of Animal Physiology and Animal Nutrition, 99(2), 290–298. https://doi.org/10.1111/jpn.12194
Kop-Bozbay, C., Konanç, K., Ocak, N., & Öztürk, E. (2013, September). The effects of in ovo injection of propolis and injection site on hatchability, hatching weight and survival of newly-hatched chicks (In Turkish). In 7. Ulusal Hayvan Besleme Kongresi. Ankara, Turkey.
McGruder, B. M., Zhai, W., Keralapurath, M. M., Bennett, L. W., Gerard, P. D., & Peebles, E. D. (2011). Effects of in ovo injection of electrolyte solutions on the pre- and post-hatch physiological characteristics of broilers. Poultry Science, 90(5), 1058–1066. https://doi.org/10.3382/ps.2010-00893
Noy, Y., & Uni, Z. (2010). Early nutritional strategies. World’s Poultry Science Journal, 66(4), 639–646. https://doi.org/10.1017/S0043933910000620
Noy, Y., Geyra, A., & Sklan, D. (2001). The effect of early feeding on growth and small intestinal development in the post-hatch poult. Poultry Science, 80(7), 912–919. https://doi.org/10.1093/ps/80.7.912
Ohta, Y., & Kidd, M. T. (2001). Optimum site for in ovo amino acid injection in broiler breeder eggs. Poultry Science, 80(10), 1425–1429. https://doi.org/10.1093/ps/80.10.1425
Ohta, Y., Tsushima, N., Koide, K., Kidd, M. T., & Ishibashi, T. (1999). Effect of amino acid injection in broiler breeder egg on embryonic growth and hatchability of chicks. Poultry Science, 78(11); 1493–1498. https://doi.org/10.1093/ps/78.11.1493
Oliveira, T. F. B., Bertechini, A. G., Bricka, R. M., Kim, E. J., Gerard, P. D., & Peebles, E. D. (2015). Effects of in ovo injection of organic zinc, manganese and copper on the hatchability and bone parameters of broiler hatchlings. Poultry Science, 94(10), 2488–2494. https://doi.org/10.3382/ps/pev248
Ospina-Rojas, I. C., Murakami, A. E., Do Amaral Duarte, C. R., Eyng, C., Lopes De Oliveira, C. A., & Janeiro, V. (2014). Valine, isoleucine, arginine and glycine supplementation of low-protein diets for broiler chickens during the starter and grower phases. British Poultry Science, 55(6), 766–773. https://doi.org/10.1080/00071668.2014.970125
Panda, A. K., Rama RAO, S. S., Raju, M. V. L. N., & Sharma, S. S. (2008). Effect of probiotic (Lactobacillus sporogenes) feeding on egg production and quality, yolk cholesterol and humoral immune response of white leghorn layer breeders. Journal of the Science of Food and Agriculture, 88(1), 43–47. https://doi.org/10.1002/jsfa.2921
Pinchasov, Y., & Noy, Y. (1993). Comparison of post-hatch holding time and subsequent early performance of broiler chicks and turkey poults. British Poultry Science, 34(1), 111–120. https://doi.org/10.1080/00071669308417567
Rath, N. C. (2000). Factors Regulating Bone Maturity and Strength in Poultry. Poultry Science, 79(7), 1024–1032. https://doi.org/10.1093/ps/79.7.1024
Richards, M. P. (1997). Trace mineral metabolism in the avian embryo. Poultry Science, 76(1), 152–164. https://doi.org/10.1093/ps/76.1.152
Ricklefs, R. E. (1987). Comparative analysis of avian embryonic growth. Journal of Experimental Zoology. Supplement, 1, 309–323.
Romanoff, A. L. (1960). The avian embryo: Structural and Functional Development. New York, NY: Macmillan.
Sarica, M., Karacay, N., Ocak, N., Yamak, U., Kop, C., & Altop, A. (2009). Growth, slaughter and gastrointestinal tract traits of three turkey genotypes under barn and free-range housing systems. British Poultry Science, 50(4), 487–494. https://doi.org/10.1080/00071660903110919
SAS Institute Inc. (2010). SAS Proprietary Software Release 9.2. Cary, NC: SAS Inst. Inc.
Sauer, G. R., Wu, L. N., Iijima, M., & Wuthier, R. E. (1997). The influence of trace elements on calcium phosphate formation by matrix vesicles. Journal of Inorganic Biochemistry, 65(1), 57–65. https://doi.org/10.1016/S0162-0134(96)00080-3
Schulte-Drüggelte, R. (2015). The importance of quality nutrition and management on the breeder farm. International Hatchery Practice, 29(6), 25–26. https://doi.org/10.12968/prma.2015.25.6.29
Shafey, T. M., Alodan, M. A., Al-Ruqaie, S. I. M., & Abouheif, M. A. (2012). In ovo feeding of carbohydrates and incubated at a high incubation temperature on hatchability and glycogen status of chicks. South African Journal of Animal Science, 42(3), 210–220. https://doi.org/10.4314/sajas.v42i3.2
Sklan, D. (2001). Development of the digestive tract of poultry. World’s Poultry Science Journal, 57(4), 415–428. https://doi.org/10.1079/WPS20010030
Starcher, B. C., Hill, C. H., & Madaras, J. G. (1980). Effect of zinc deficiency of bone collagenase and collagen turnover. Journal of Nutrition, 110(10), 2095–2102. https://doi.org/10.1093/jn/110.10.2095
Tako, E., Ferket, P. R., & Uni, Z. (2005). Changes in chicken intestinal zinc exporter mRNA expression and small intestinal functionality following intra-amniotic zinc-methionine administration. Journal of Nutrition and Biochemistry, 16(6), 339–346. https://doi.org/10.1016/j.jnutbio.2005.01.002
Uni, Z., Geyra, A., Ben-Hur, H., & Sklan, D. (2000). Small intestinal development in the young chick: crypt formation and enterocyte proliferation and migration. British Poultry Science, 41(5), 544–551. https://doi.org/10.1080/00071660020009054
Uni, Z., & Smith, R. H. (2017). The effects of in-ovo feeding. Retrieved from https://zootecnicainternational.com/featured/effects-ovo-feeding/
Uni, Z., Smirnov, A., & Sklan, D. (2003). Pre- and post-hatch development of goblet cells in the broiler small intestine: effect of delayed access to feed. Poultry Science, 82(2), 320–327. https://doi.org/10.1093/ps/82.2.320
Wang, Y. W., Ning, D., Peng, Y. Z., & Guo, Y. M. (2013). Effects of dietary L-carnitine supplementation on growth performance, organ weight, biochemical parameters and ascites susceptibility in broilers reared under low-temperature environment. Asian-Australasian Journal of Animal Science, 26(2), 233–240. https://doi.org/10.5713/ajas.2012.12407
Yair, R., & Uni, Z. (2011). Content and uptake of minerals in the yolk of broiler embryos during incubation and effect of nutrient enrichment. Poultry Science, 90(7), 1523–1531. https://doi.org/10.3382/ps.2010-01283
Yair, R., Shahar, R., & Uni, Z. (2013). Pre-natal nutritional manipulation by in ovo enrichment influences bone structure, composition and mechanical properties. Journal of Animal Science, 91(6), 2784–2793. https://doi.org/10.2527/jas.2012-5548
Yamak, U. S., Sarica, M., & Boz, M. A. (2014). Comparing slow-growing chickens produced by two- and three-way crossing with commercial genotypes. 1. Growth and carcass traits. European Poultry Science (Archiv für Geflügelkunde), 78, 1–11.
Zhai, W., Bennett, L. W., Gerard, P. D., Pulikanti, R., & Peebles, E. D. (2011). Effects of in ovo injection of carbohydrates on somatic characteristics and liver nutrient profiles of broiler embryos and hatchlings. Poultry Science, 90(12), 2681–2688. https://doi.org/10.3382/ps.2011-01532
DOI: http://dx.doi.org/10.14720/aas.2020.115.2.562
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Vaibhav Bhagwan AWACHAT, Arumbackam Vijayarangam ELANGOVAN, Olajide Mark SOGUNLE, Corbon Godfrey DAVID, Jyotirmoy GHOSH, Shivakumar Nisarani Kollurappa GOWDA, Subrat Kumar BHANJA, Samir MAJUMDAR
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.
eISSN 1854-1941